Socio-hydrology model of inter-basin water transfers with stakeholder elicitation

Session 2- Water Assessments in River Basin: Perspectives

Sai Veena*1, Riddhi Singh1

(1) Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
Motivation: Water resources are stressed in many parts of the world

Solutions being explored:
1. More storage (small or big reservoirs)
2. Rainwater harvesting
3. Inter-basin transfer (IBT) of water
4. Demand reductions
Global inter-basin water transfers: >25% by 2025

Proposed schemes will transfer additional 940 billion cubic meter out of basins, will represent >25% of global water withdrawals by 2025

Gupta and van der Zaag, 2008, Interbasin water transfers and integrated water resources management: Where engineering, science and politics interlock, *Physics and Chemistry of the Earth*
IBTs in India: National River Linking Program (NRLP)

• Proposed and on-going projects of inter-basin water transfers for India

• Additional irrigation potential: 35 Million hectare

• Additional hydro-power potential : 34,000 MW

• Estimated cost of nearly $90 billion

• Three Links proposed to transfer water from Godavari to Krishna Basins (Godavari is the largest river basin in Southern India)
Challenges for interbasin water transfers

• Do we need IBT or not? Is water transfer justified?

• Why is water availability different in both the basins? Is it due to natural processes or socio-economic factors?

• What is the role of interaction between human and nature in decision making?

• What are the insights gained from stakeholder elicitation?
Case study: Link from Godavari to Krishna basin

No Water for Nagarjuna Sagar canal: Andhra government

GUNTUR: In what could be big setback to the farmers, the state government has expressed its inability to release water from Nagarjuna Sagar for cultivation of paddy. Citing the poor water reserves in the Sagar project, the state government asked the farmers to go for Irrigated Dry (ID) crops.

Incidentally, this is the fourth consecutive year for the state government not to release water for paddy cultivation under Nagarjuna Sagar right canal ayucut. About 10 lakh acres of paddy fields are slowly turning barren lands as majority of the farmers are not switching to the cultivation of ID crops for fear of losing the soil fertility and change of its nature.

Hyderabad faces water shortage as Nagarjuna Sagar drops below dead storage level

The state is looking at Marjeera water from the Sagar dam in Medak to meet the city’s needs.

Existing Nagarjuna Sagar dam

Recipient’s irrigation area: 12,000 Mm²
Case study: Link from Godavari to Krishna basin

No Water for Nagarjuna Sagar canal: Andhra government

Samdani MN | TNN | Jul 31, 2018, 23:10 IST

GUNTUR: In what could be big setback to the farmers, the state government has expressed its inability to release water from Nagarjuna Sagar for cultivation of paddy. Citing the poor water reserves in the Sagar project, the state government asked the farmers to go for Irrigated Dry (ID) crops.

Incidentally, this is the fourth consecutive year for the state government not to release water for paddy cultivation under Nagarjuna Sagar right canal ayucut. About 10 lakh acres of paddy fields are slowly turning barren lands as majority of the farmers are not switching to the cultivation of ID crops for fear of losing the soil fertility and change of its nature.

Hyderabad faces water shortage as Nagarjuna Sagar drops below dead storage level

The state is looking at Manjeera water from the Singur dam in Medak to meet the city’s needs.

TNM Staff | Thursday, August 31, 2017 - 08:49

Recipient’s irrigation area: 12,000 Mm2

Existing Nagarjuna Sagar dam

Legend
- Other Links
- Inchtumpoli-NagarjunaSagar
- Evergreen forest
- Deciduous forest
- Scrub/Deg. forest
- Litteral swamp
- Grassland
- Other wasteland
- Gulled
- Scubland
- Water bodies
- Shifting Cultivation

Inflow Donor
Inflow Recipient

Proposed transfers are around 20% of mean annual inflows to the donor basin
Higher Precipitation in the Godavari basin

- Figure shows mean annual precipitation of Godavari and Krishna basins for the years 1901-2015 (IMD data)

- Godavari basin has high precipitation compared to the Krishna basin, hence high volumes of inflows in the Godavari basin
Higher Inflows in Donor and Human Impacts on Inflows

Annual observed flows of donor are very high compared to recipient (more than double). This shows that the donor basin has surplus water.

Mean monthly observed flows in the recipient basin for pre-dam and post-dam scenarios. In the year 1981, a dam was under operation in the upstream of Nagarjuna Sagar dam.
Trend Analysis: Long term trends in Inflows

The inflows show a clear decreasing tendency during the monsoon leads to drought situations especially notable in the case of recipient basins.
Population Density

- The density is higher in recipient basin compared to the donor basin for all the years.
- Population density is increasing with time in both the basins.
- Water demands and abstraction increase due to increase in population density.

Spatial and Temporal Variation in Construction of Dams

• Figure shows the construction of dams in donor and recipient basins with capacity, location and year of construction

• The recipient basin has large dams constructed earlier (w.r.t time) compared to the donor basins

The overall GDP of recipient is found to be higher than the donor basin over the years. Also, GDP is increasing in both the basins with time.
Interviews were held with the following stakeholders categorised into different groups

<table>
<thead>
<tr>
<th>Group 1 (Decision makers)</th>
<th>Group 2 (Water Users)</th>
<th>Group 3 (Environmental Groups)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWDA</td>
<td>Aranya Agricultural Alternatives</td>
<td>EPTRI</td>
</tr>
<tr>
<td>Irrigation and CAD department</td>
<td>Farmer Training center</td>
<td>Hyderabad Greens</td>
</tr>
<tr>
<td>Nagarjuna Sagar dam division</td>
<td>Center for sustainable agriculture</td>
<td>Centre for Environmental concerns</td>
</tr>
<tr>
<td>Krishna River Management Board</td>
<td>Uppal Industries Association</td>
<td>Prakriti Environment Society</td>
</tr>
<tr>
<td>Godavari River Management Board</td>
<td>Other farmers on phone</td>
<td>WASSAN: works with watershed management</td>
</tr>
<tr>
<td>Irrigation-Nagarjuna Sagar Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CWC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMWSSB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Causal Loop Diagram

Highlighted information is from the decision makers; CLD is for command area

- Positive feedback
- Negative feedback

[Diagram showing water flow, strategy, and feedback loops related to water resources management, including rainfall, evapotranspiration, ground water availability, water demand, water supply, and alternative water sources.]
Sub-models in the socio-hydrological model

- Lumped rainfall runoff model of upstream catchments: Climate (Temperature and Rainfall)
- Reservoir (infrastructure)
 - Decision maker response for water transfer (governance)
 - Performance metrics
 - Decision maker response for water releases to satisfy demands
- Command area sub-model (Mass balance model)
 - Aquifer: recharge and pumping
 - Demand
 - Related to population and cultivable area
- Consumer water use sub-model – accounts for human behaviour
 - other alternatives for water (infrastructure)
 - Demand Satisfaction
Model Dynamics for the Base Case Scenario

- Considering there is no transfer from donor to recipient basin
- The model is run from 1968 June to 2015 May (47 years)
- Demands are constant and assumed that they do not change with time

Bluewater withdrawal limits

- The dotted lines are the withdrawal limits in both basins
- In the donor basin, withdrawal is within limits whereas in recipient it is exceeds most of the time
Groundwater Storage

- Groundwater storage is always full in the donor basin.
- In recipient, it does not reach that level and is frequently used in the case of deficits.
Deficits and Downstream releases

• The dotted lines are the thresholds for flood releases
• No deficits in donor but high volumes of deficits in the recipient basin
Conclusions

• Continuous deficits are observed in the recipient basin which justifies the transfer of water
• Socio-economic status of the recipient basin is one of the reason for these deficits. If donor basin follows similar trend as recipient basin, it may also face droughts in the future.
• Elicitation from stakeholders helps in defining the model structure and understanding human behaviour

Further Study

• Define demands changing with time
• Find the optimal transfers of IBTs
• Predict the shortages in donor basin
Thank You